In silico Assessment of Galanthamine Alkaloids as Cytotoxic Agents and Brd4 Inhibitors

Taye Temitope Alawode *

Department of Chemistry, Federal University Otuoke, Bayelsa State, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

Cancer is associated with high mortality. The potential of Galanthamine alkaloids as cytotoxic agents and Brd4 inhibitors was investigated. Selected alkaloids were screened for cytotoxic properties using the Cell Line Cytotoxicity Predictor (CLCPred). The drug-likeness, physicochemical and pharmacokinetic properties of the compounds were determined using SwissADME. The interactions of the ligands with the Brd4 protein were investigated using SwissDock. Lastly, the toxicity of the compounds was investigated using SwissADME. The compounds showed cytotoxic potential against bone marrow neuroblastoma at Pa>0.5. All the compounds satisfied Lipinski’s, Verber’s, and Muegge’s conditions for drug-likeness. The binding energy of the alkaloids with Brd4 ranged between - 7.22 and - 7.82 kcal mol-1. Lycoramine with a binding energy of -7.82 kcal mol-1 had comparable binding energy to those of the standard drug, doxorubicin (-7.91 kcal mol-1), and Brd4 inhibitors: Pelabresib (-7.96 kcal mol-1) and Birabresib (-8.43 kcal mol-1). The compounds were non-AMES toxic, non-carcinogens, and weak inhibitors of the human ether-a-go-go related gene (hERG). Galanthamine alkaloids showed potential for treating human bone marrow neuroblastoma. The results of this study have laid a foundation for subsequent in vitro and in vivo studies to establish the predicted activity.

Keywords: Alkaloids, Brd4, cancer, cytotoxicity, SwissDock


How to Cite

Alawode, T. T. (2023). In silico Assessment of Galanthamine Alkaloids as Cytotoxic Agents and Brd4 Inhibitors. South Asian Research Journal of Natural Products, 6(3), 222–231. Retrieved from https://www.journalsarjnp.com/index.php/SARJNP/article/view/127

Downloads

Download data is not yet available.

References

World Cancer Research Fund International. Worldwide Cancer Data; 2023. Available:https://www.wcrf.org/cancer-trends/worldwide-cancer-data/. Accessed online: 9/7/2023.

World Health Organization. Cancer; 2022. Available:https://www.who.int/news-room/fact-sheets/detail/cancer#:~:text=Key%20facts,and%20rectum%20and%20prostate%20cancers. Accessed online: 9/7/2023.

American Cancer Society. Global Cancer Facts & Figures; 2023 Available:(https://amp.cancer.org/research/cancer-facts-statistics/global.html) Access online: 09/07/23.

Budreviciute A, Damiati S, Sabir DK, Onder K, Schuller-Goetzburg P, Plakys G, Katileviciute A, Khoja S, Kodzius R. Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. Frontiers in Public Health. 2020;8. Available:https://doi.org/10.3389/fpubh.2020.574111

Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, Kramer J, Siegel RL. Cancer treatment and survivorship statistics. CA A Cancer J Clin, 2022; 72:409-436. Available:https://doi.org/10.3322/caac.21731

Zhong L, Li Y, Xiong L et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Sig Transduct Target Ther. 2021;6:201. Available:https://doi.org/10.1038/s41392-021-00572-w

Kaushik B, Sharma J, Yadav K, Kumar P, Shourie A. Phytochemical properties and pharmacological role of plants: Secondary metabolites. iosciBiotech Res. Asia. 2021; 18(1).

Jha V, Devkar S, Gharat K, Kasbe S, Matharoo DK, Pendse S, Bhosale A, Bhargava A. Screening of Phytochemicals as Potential Inhibitors of Breast Cancer using Structure Based Multitargeted Molecular Docking Analysis. Phytomedicine Plus. 2022;2(2):100227. Available:https://doi.org/10.1016/j.phyplu.2022.100227

Changxing L, Galani S, Hassan F, Rashid Z, Naveed M, Fang D, Ashraf A, Qi W, Arif A, Saeed M, Arif Chishti AA, Jianhua L. Biotechnological approaches to the production of plant-derived promising anticancer agents: An update and overview. Biomedicine & Pharmacotherapy. 2020;132:110918. Available:https://doi.org/10.1016/j.biopha

Rayan A, Raiyn J, Falah M. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity. PLoS One. 2017;12(11). DOI: 10.1371/journal.pone.0187925.e0187925.

Liao YF, Wu YB, Long X, Zhu SQ, Jin C, Xu JJ, Ding JY. High level of BRD4 promotes non-small cell lung cancer progression. Oncotarget. 2016;23;7(8): 9491-500. DOI: 10.18632/oncotarget.7068

Segura MF, Fontanals-Cirera B, Gaziel-Sovran A, Guijarro MV, Hanniford D, Zhang G, Gonzalez-Gomez P, Morante M, Jubierre L, Zhang W, Darvishian F, Ohlmeyer M, Osman I, Zhou MM, Hernando E. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res. 2013; 73:6264–6276.

Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA, Magoon D, Qi J, Blatt K, Wunderlich M, Taylor MJ, Johns C, Chicas A, Mulloy JC, Kogan SC, Brown P, Valent P, Bradner JE, Lowe SW, Vakoc CR. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature. 2011;478:524–528.

Ma L, Li G, Yang T, Zhang L, Wang X, Xu X, Ni H. An inhibitor of BRD4, GNE987, inhibits the growth of glioblastoma cells by targeting C-Myc and S100A16. Cancer Chemother Pharmacol. 2022;90(6): 431-444.

Alsarraj J, Hunter KW. Bromodomain-Containing Protein 4: A dynamic regulator of breast cancer metastasis through modulation of the extracellular matrix. Int. J. Breast Cancer. 2012: 670632.

Jing X, Shao S, Zhang Y, Luo A, Zhao L, Zhang L, Gu S, Zhao X. BRD4 inhibition suppresses PD-L1 expression in triple-negative breast cancer. Exp. Cell Res. 2020;392:112034. DOI: 10.1016/j.yexcr.2020.112034

Shi J, Vakoc CR. The Mechanisms behind the Therapeutic Activity of BET Bromodomain Inhibition. Mol. Cell. 2014;54:728.

Yang H, Wei L, Xun Y, Yang A, You H. BRD4: An emerging prospective therapeutic target in glioma. Molecular Therapy Oncolytics. 2021;21:1-14.

Liu Z, Wang P, Chen H, Wold EA, Tian B, Brasier AR, Zhou J. Drug discovery targeting bromodomain-containing protein 4. J Med Chem. 2017;60: 4533–4558.

Zhang F, Ma S. Disrupting acetyl-lysine interactions: Recent advance in the development of BET inhibitors. Curr. Drug Targets. 2018;19:1148–1165.

Heinrich M. Galanthamine from Galanthus and Other Amaryllidaceae – Chemistry and Biology Based on Traditional Use. The Alkaloids: Chemistry and Biology. 2010; 157–165. DOI:10.1016/s1099-4831(10)06804-5

Refaat J, Kamel MS, Ramadan MA, Ali AA .Crinum; An endless source of bioactive principles: A review. Part III; Crinum alkaloids: Belladine-, galanthamine-, lycorenine-, tazettine-type alkaloids and other minor types. International Journal of Pharmaceutical Sciences and Research. 2012;3(10):3630-3638.

Naguib S, Bernardo-Colón A, Cencer C, Gandra N, Rex TS. Galantamine protects against synaptic, axonal, and vision deficits in experimental neurotrauma. Neurobiology of Disease. 2020; 134:104695. Available:https://doi.org/10.1016/j.nbd.2019.104695.

Lagunin AA, Dubovskaja VI, Rudik AV, Pogodin PV, Druzhilovskiy DS, Gloriozova TA, Filimonov DA, Sastry NG, Poroikov VV. CLC-Pred: A freely available webservice for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS One 2018;25:13(1): 0191838. DOI: 10.1371/journal.pone.0191838

Lipinski CA, Lombardo F, Dominy BW, Feeney P. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001;44:1841–1846.

Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002;45:2615–2623.

Lewin J, Soria J, Stathis A, Delord J, Peters S, Awada A, Aftimos PG, Bekradda M, Rezai K, Zeng Z, Hussain A, Perez S, Siu LL, Massard C. Phase Ib Trial With Birabresib, a Small-Molecule Inhibitor of Bromodomain and Extraterminal Proteins, in Patients With Selected Advanced Solid Tumors. Journal of Oncology. 2018; 36(30):3007-3014.

Blum KA, Supko JG, Maris MB, Flinn IW, Goy A, Younes A, Bobba S, Senderowicz AM, Efuni S, Rippley R et al. A phase I study of pelabresib (CPI-0610), a small-molecule inhibitor of BET proteins, in patients with relapsed or refractory lymphoma. Cancer Res. Commun. 2022; 2:795–805.

O’Boyle NM, Banck M, James CA et al. Discovery and development of Sorafenib: A multikinase inhibitor for treating cancer. J. Cheminform. 2011;3:33. Available:https://doi.org/10.1186/1758-2946-3-33

Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:270-277.

Wafa T, Mohamed K. Molecular Docking Study of COVID-19 Main Protease with Clinically Approved Drugs. ChemRxiv; 2020. Available:doi.org/10.26434/chemrxiv.12318689.v1

Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 2017;7(1): 42717.

Smith MA, Seibel NL, Altekruse SF, et al. Outcomes for children and adolescents with cancer: Challenges for the twenty-first century. J Clin Oncol. 2010;28:2625–34.

Yan P, Qi F, Bian L, Xu Y, Zhou J, Hu J, Ren L, Li M, Tang W. Comparison of Incidence and Outcomes of Neuroblastoma in Children, Adolescents, and Adults in the United States: A Surveillance, Epidemiology, and End Results (SEER) Program Population Study. Med Sci Monit. 2020;29:26:927218. DOI: 10.12659/MSM.927218.

Xie L, Onysko J, Morrison H. Childhood cancer incidence in Canada: Demographic and geographic variation of temporal trends (1992–2010). Health Promot Chronic Dis Prev Can. 2018;38:79–115.

Katta SS, Nagati V, Paturi ASV, Murakonda SP, Murakonda AB, Pandey MK, Gupta SC, Pasupulati AK, Challagundla KB. Neuroblastoma: Emerging trends in pathogenesis, diagnosis, and therapeutic targets. Journal of Controlled Release. 2023;357:444-459, Available:https://doi.org/10.1016/j.jconrel.2023.04.001.

Muegge I. Selection criteria for drug-like compounds. Medicinal Research Reviews. 2003;23(3): 302-321.

Mälkiä A, Murtomäki L, Urtti A, Kontturi K. Drug permeation in biomembranes: In vitro and in silico prediction and influence of physicochemical properties. Eur J Pharm Sci. 2004;23(1):13–47.

Muchmore SW, Edmunds JJ, Stewart KD, Hajduk PJ. Cheminformatic tools for medicinal chemists. J Med Chem. 2010;53(13):4830–4841.

Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR. Molecular determinants of blood–brain barrier permeation. Ther Deliv. 2015;6(8):961–971.

Z SM, Guo J, Li W, Yang T, Zhang S. The Human Ether-a-go-go-related Gene (hERG) potassium channel represents an unusual target for protease-mediated damage. Cell Biology. 2016;291(39): 20387-20401.